Search results

Search for "femtosecond laser" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • for a monolayer of graphene onto SiO2) measured using AFM, shown in the insets of Figure 1D, agree with the data obtained in studies presenting femtosecond laser thinning of graphene [28]. In addition to the region located below the baseline, we also observe an elevation in the central part of the
PDF
Album
Full Research Paper
Published 07 Feb 2024

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • ) can add up to 50,000+ USD, and this price does not include the femtosecond laser or anti-vibration systems. Custom-built 2PP systems also require extensive optical expertise for the initial installation and are typically a major milestone for several doctoral students. In general, custom-built 2PP
PDF
Album
Perspective
Published 15 Aug 2023

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • with high aspect ratio. These needles render superhydrophobic properties to the surface. Such surfaces can either be prepared using a RIE process [12] or a laser-assisted etching process described by Mazur et al. [13], which requires expensive silicon wafers as substrate as well as a femtosecond laser
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • . [47] employed femtosecond laser irradiation to fabricate nanorod arrayed structures decorated with Au nanoparticles. The study showed that the Raman intensity tended to decrease as the Au film thickness increased. Based on the above results, we selected Au films of 10 nm thickness for further
PDF
Album
Full Research Paper
Published 16 Oct 2020

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • views of the graph corresponding to the (0,−1,0), (1,1,1), and (0,0,−1) crystal faces. Figure 2c shows the self-designed nonlinear optical measurement system for the FONP SA material. After passing through the coupler, the femtosecond laser light is divided into two channels on average. One path is
PDF
Album
Full Research Paper
Published 20 May 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated illumination. Keywords: chalcopyrite; femtosecond laser
  • groups of Paire [15] and Sadewasser [16] successfully deposited linear and dot-shaped precursors and processed them to solar cells. Here, we focus on reviewing two different femtosecond laser-based, material-saving approaches to produce CuInSe2 (CISe) and CIGSe microabsorbers. Several studies ranging
  • created, site-controlled via femtosecond-laser treatment, which were subsequently processed to microabsorbers. For further processing to microcells, a pathway was demonstrated, in which an isolation concept based on spin coating was applied. The advantage of this approach is that imperfections can be
PDF
Album
Review
Published 12 Dec 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • allows fabrication of specific micro- and nanostructures over extended areas. In this work, we exploit this approach to fabricate complex biomimetic structures on the surface of steel 1.7131 formed upon irradiation with high repetition rate femtosecond laser pulses. In particular, the fabricated
  • angle measurements of water drops placed on the surface reveal that a wide range of angles can be accessed by selecting the appropriate irradiation parameters, highlighting also here the prominent role of the number of scans. Keywords: biomimetics; femtosecond laser irradiation; laser-induced periodic
  • repetition rate femtosecond laser system and a beam scanning system. B) Continuous irradiated areas are formed by overlapping consecutive laser pulses (ω0 = 19.4 µm) in two dimensions through a proper adjustment of the laser repetition rate (ν), the scanning speed (V), and the line separation (Δ). C) Several
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • was revealed that the volume around gold nanoparticles where the permittivity is near zero, ε ≈ 0, accounts for the strongest absorption, which leads to the effective enhancements of X-ray emission. Keywords: double pulse; gold nanoparticles; intense femtosecond laser; plasma; water; X-ray
  • ; Introduction X-ray-related science and technology is one of the most powerful tools for material science, in particular regarding nanomaterials [1]. Femtosecond laser-based X-ray pulse sources [2] have been available on the basis of linear- and nonlinear-optical processes such as plasma formation [3][4][5] and
  • great interest, due to the efficient conversion of the absorbed energy into energetic ions, electrons and X-rays [12][13][14]. Plasmonic nanoparticles are expected to be highly useful for femtosecond laser-based X-ray emission due to high functionality, large absorption cross section and spectral
PDF
Album
Full Research Paper
Published 01 Oct 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • with a femtosecond laser, thereby inducing polymerization at the hot spots. In another approach, based on confocal fluorescence microscopy, a dye solution is deposited on the samples, and the higher fluorescence magnitude originating from the hot spots is measured [19]. However, these last four
PDF
Album
Full Research Paper
Published 23 May 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • above techniques summarized in Table 1, there are other less widespread methods such as the dip-pen nanolithography technique [116], uniaxial pressure technique [117][118] and the use of femtosecond laser pulses [119], which are not presented here. Evaluating the arrangement and alignment of CNTs After
PDF
Album
Review
Published 05 Feb 2018

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

  • Jusuf M. Khreis,
  • João Ameixa,
  • Filipe Ferreira da Silva and
  • Stephan Denifl

Beilstein J. Nanotechnol. 2017, 8, 2583–2590, doi:10.3762/bjnano.8.258

Graphical Abstract
  • multiple ionization in a femtosecond laser field was recently reported by Tanaka et al. [24] for Cr(CO)6, Mo(CO)6 and W(CO)6. In the present work we studied the interaction of LEE with the chromium carbonyl precursor, Cr(CO)6. In general, a low-energy electron may be captured by a target molecule, which
PDF
Album
Full Research Paper
Published 04 Dec 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system) induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm
  • . At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing
  • with dimensions of 10 × 10 × 3 mm and polished. We chose borosilicate glass because of its low thermal expansion coefficient and good resistance to the high thermal gradients likely to be induced by laser processing. The samples were irradiated by nanosecond and femtosecond laser pulses with different
PDF
Album
Full Research Paper
Published 21 Nov 2017

The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

  • Florent Pessina and
  • Denis Spitzer

Beilstein J. Nanotechnol. 2017, 8, 452–466, doi:10.3762/bjnano.8.49

Graphical Abstract
  • our everyday electronic devices for decades, PVD applied on energetic materials will never be able to reach a production of several hundred of grams per hour. However, PVD is suitable for the current trend to create ”pyrotechnic integrated circuits”. Femtosecond laser ablation is used for nanoparticle
PDF
Album
Supp Info
Review
Published 17 Feb 2017

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • optical breakdown process [37][42][43]. Hatef and Meunier [43] recently reported the impact of size and inter-particle distance for femtosecond laser pulse widths on the energy absorption by gold nanosphere dimers and by the plasma surrounding the dimers. They showed that the energy deposition in the
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

  • Martina Banchelli,
  • Bruno Tiribilli,
  • Roberto Pini,
  • Luigi Dei,
  • Paolo Matteini and
  • Gabriella Caminati

Beilstein J. Nanotechnol. 2016, 7, 9–21, doi:10.3762/bjnano.7.2

Graphical Abstract
  • distance permits the creation of an efficient hot spot distribution. Additionally, recent experiments on localized surface plasmon emission via delayed femtosecond laser pulses confirmed that small clusters lead to a plasmonic response that provides the highest peak intensity [60]. Conclusion Here we
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2016

Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

  • Valentin S. Teodorescu,
  • Cornel Ghica,
  • Adrian V. Maraloiu,
  • Mihai Vlaicu,
  • Andrei Kuncser,
  • Magdalena L. Ciurea,
  • Ionel Stavarache,
  • Ana M. Lepadatu,
  • Nicu D. Scarisoreanu,
  • Andreea Andrei,
  • Valentin Ion and
  • Maria Dinescu

Beilstein J. Nanotechnol. 2015, 6, 893–900, doi:10.3762/bjnano.6.92

Graphical Abstract
  • to the laser wavelength or harmonics [27]. This happens at all wavelengths and pulse durations, as in the case of femtosecond laser irradiation [28]. The stress-induced periodic-ripples mechanism demonstrated for crystalline Si [29] could be used for amorphous materials if we define a stress yield
PDF
Album
Full Research Paper
Published 07 Apr 2015

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • plume while in the case of nanosecond pulses the plasma plume may absorb further energy from the laser pulse, which may be responsible for homogenization of the ejected material [24][48][49] and hence more narrow size distributions. In the case of femtosecond laser ablation, particularly at high laser
  • obtained from PLAL in deionized water using picosecond (black curve) and nanosecond (red curve) pulses. B) Gold nanoparticles obtained from femtosecond laser ablation showing a bimodal particle size distribution. (Reprinted with permission from [50]. Copyright 2003 AIP Publishing ICC). Size control of
PDF
Album
Video
Review
Published 12 Sep 2014

Observation and analysis of structural changes in fused silica by continuous irradiation with femtosecond laser light having an energy density below the laser-induced damage threshold

  • Wataru Nomura,
  • Tadashi Kawazoe,
  • Takashi Yatsui,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2014, 5, 1334–1340, doi:10.3762/bjnano.5.146

Graphical Abstract
  • continuous irradiation with laser light having an energy density below the LIDT. Therefore, here we focused on the degradation in performance of an optical component caused by continuous irradiation with femtosecond laser light having a low energy density, i.e., laser-induced degradation. We performed an in
  • photogenerated carriers in a degraded silica substrate and a damaged silica substrate and observed a Raman signal originating from a specific molecular structure of silica. From these findings, we concluded that compositional changes in the molecular structure occurred during degradation due to femtosecond laser
  • irradiation having an energy density below the LIDT. Keywords: compositional change in molecular; femtosecond laser; fused silica; laser-induced damage; laser-induced degradation; Introduction Since the invention of the laser, it has been widely known that damages occur at the surface or interior of optical
PDF
Album
Full Research Paper
Published 21 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • originated from moulds of polishing paper (FibrMet Discs, Buehler GmbH, Düsseldorf, Germany) with different grain sizes (Ra: 0.3 µm, 1 µm, 3 µm, 9 µm, and 12 µm) (Figure 3b). The master for the third type of surfaces was produced from zirconium oxide surface microstructured by femtosecond laser ablation
  • . Structuring was performed with a commercially available amplified Ti:Sapphire femtosecond laser system (Femtopower Compact Pro, Femtolasers GmbH, Austria). The systems delivers sub-30-fs pulses at a central wavelength of 800 nm with a pulse energy of up to 1 mJ, and a repetition rate of 1 kHz. An x–y
PDF
Album
Full Research Paper
Published 21 Jul 2014

Energy dissipation in multifrequency atomic force microscopy

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 494–500, doi:10.3762/bjnano.5.57

Graphical Abstract
  • action. Moreover, the techniques outlined in this work will find applications in a variety of fields of interest for nanotechnology. Few-cycle AFM will be useful to characterize the mechanical contact properties of nanostructures produced by femtosecond laser ablation [22], while wavelets techniques will
PDF
Album
Correction
Full Research Paper
Published 17 Apr 2014

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • of high field enhancement. These two techniques are variations of the same methods: The substrates carrying the nanostructures are irradiated with pulsed laser light. The ablation experiments are realized by using irradiation with femtosecond laser pulses, i.e., pulses shorter than the internal heat
  • inside the triangle. Results and Discussion Femtosecond laser ablation General features We first give an overview over the general features of femtosecond plasmonic ablation. Figure 5 shows an SEM micrograph of a typical femtosecond ablation site on a sample, which consists of gold nano-triangles
  • prepared by colloid lithography. The plasmonic structures were irradiated with a single femtosecond laser pulse with a total energy of 30 μJ. The irradiation intensity increases towards the center of the irradiated spot, and, since the spot profile is known, the local fluence can be determined by measuring
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain 10.3762/bjnano.4.59 Abstract In this work we analyze the ablation dynamics of crystalline Si in the intense near field generated by a small dielectric particle located at the material surface when being irradiated with an infrared femtosecond laser pulse
  • . Further details regarding the preparation procedure and optical properties of the different substrates and particles used, as well as near field imaging using GST films can be found elsewhere [11]. Femtosecond laser irradiation and time-resolved microscopy Figure 2 shows a scheme of the set-up used for
PDF
Album
Full Research Paper
Published 04 Sep 2013

Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

  • Mihai E. Vaida,
  • Robert Tchitnga and
  • Thorsten M. Bernhardt

Beilstein J. Nanotechnol. 2011, 2, 618–627, doi:10.3762/bjnano.2.65

Graphical Abstract
  • chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was
  • at all. Keywords: femtosecond laser spectroscopy; gold; methyl halide photodissociation; surface chemistry; time-of-flight mass spectrometry; Introduction The understanding of the mechanisms involved in the light-induced excitation and fragmentation of organic molecules on metal substrates is of
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2011

Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method

  • Michal Eshed,
  • Swati Pol,
  • Aharon Gedanken and
  • Mahalingam Balasubramanian

Beilstein J. Nanotechnol. 2011, 2, 198–203, doi:10.3762/bjnano.2.23

Graphical Abstract
  • zirconium rod in isopropyl alcohol has been described [7]. This process produces a colloidal solution of zirconium nanoparticles. Moreover, it was shown that the size distribution of nanoparticles can be greatly reduced by employing femtosecond laser pulses for ablation. A plasma induced cathodic discharge
PDF
Album
Full Research Paper
Published 06 Apr 2011
Other Beilstein-Institut Open Science Activities